
Commzlnz’cations 
Generation and Trapping of Methylenecyclopropene 

Summary: Evidence is presented for the intermediacy of 
methylenecyclopropene as a reactive intermediate. 

Sir: Methylenecyclopropene (1) is of considerable interest 
both from a preparative and theoretical standpoint. This 
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elusive hydrocarbon is predicted to possess only minor reso- 
nance stabilizsrtion,l and the high index of free valency at  the 
exocyclic position is expected to facilitate polymerization, a 
process favored additionally by release of strain. Although 
numerous derivatives of the methylenecyclopropene family 
have been reported,2 only two attempts to prepare the parent 
hydrocarbon can be found in the l i t e r a t~ re .~  We report here 
the generation and trapping of this hydrocarbon. 

The starting material 2 was prepared in low yield by addi- 
tion of chloromethyl carbene (CHsCHC12, n-BuLQ4 to vinyl 
chloride. Compound 2 was separated from several unidentified 
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products by preparative GLC (Carbowax 20M on Chromosorb 
W). Preliminary results from a study of the microwave spec- 
trum of 2 suggest that the chlorines bear a cis relation~hip.~ 
Other spectral data follow: NMR (CCW 6 1.12-1.43 (m, 2 H), 
1.60 (s ,3  H), and 2.70-2.99 (m, 1 H); mass spectrum calcd for 
CdH&12 123.91346, found 123.9836. 

Reaction of 2 (1 equiv) with KO-t-Bu (8 equiv) in THF at 
-30-40 “C for 1 h gave 3 in 37% isolated (preparative GLC) 
yield. In MezSO at 18-20 “C 3 was produced in 33% yield. 
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Compound 3 was characterized by its NMR spectrum which 
shows a multiplet at  6 1.19-1.40 overlapping a singlet at  1.20 
(11 H total) with other signals at  3.35-3.62 (m, 1 H) and 
5.23-5.57 (m, 2 H). Elemental composition was provided by 
mass spectroscopy: calcd for CsH140 126.1044, found 
126.1042. 

The formation of 3 is rationalized in terms of 1 as a reactive 
intermediate. Possible intermediates in the conversion of 2 
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4 5 6 7 - 1 - 3 are compounds 4-7. Four paths (a-d) which utilize 
these intermediates are summarized in Scheme I. 

Intermediate 4 appears in paths a, b, and d and would be 
expected to undergo dehydrochlorination to give 1. One might 
escape postulating 4 (and thus methylenecyclopropene) by 
assuming addition of t-BuO- to cyclopropenes 5 and 6 prior 
to isomerization to 4, although the previous observation that 
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alkylcyclopropenes undergo double-bond isomerization to the 
exocyclic position rather than add t-BuO- would seem to 
undermine this assumption.6 

Such an option is not available for intermediate 7 (path c). 
While the facile conversion of 7 to 1 would be expected, nev- 
ertheless, two additional routes (paths a7 and b) for 2 -+ 3 via 
7 which bypass methylenecyclopropene are shown in Scheme 

Scheme I1 
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11. These routes cannot be eliminated on the basis of the data 
that are available. 

Much more compelling evidence which supports the in- 
termediacy of methylenecyclopropene is found in the reaction 
sequence of Scheme 111. Thus, reaction of 2 with KO-t-Bu (6 
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equiv) in MezSO in the presence of MeS- (2 equiv) yielded, 
in addition to 3 (12%), the sulfide 9 in 34% yield. Spectral data: 
NMR (CC14) 6 0.93-1.73 (m, 2 H), 2.10 (s, 3 H), 2.20-2.58 (m, 
1 H), and 5.27-5.53 (m, 2 H); mass spectrum calcd for C5HSS 
100.0346, found 100.0342. When 4 equiv of MeS- was used, 
9 was produced in 51% yield. Oxidation of 9 with 30% HzO2 in 
glacial acetic acid gave the sulfone 8 in 72% yield. When 8 was 
treated with KO-t-Bu (8 equiv) in Me2SO,3 was produced as 
the only volatile product in 11% yield. 

Since sulfones are well known to give alkenes via p elimi- 
nation: this result provides the most compelling evidence for 
the intermediacy of methylenecyclopropene. Another possible 
interpretation, e.g., sN2 displacement in 8 or 4 seems unlikely, 
since cyclopropyl systems normalIy fail to undergo SN2 re- 
actions. 
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A Short Synthesis of (f)-Isosteganel 

Summary: (f)-Isostegane has been prepared in a three-step 
sequence utilizing sequential substitution of the p and a po- 
sitions of an electron-deficient olefin followed by nonphenolic 
oxidative coupling. 

Sir: Kupchan and coworkers recently described an unusual 
and highly cytotoxic class of dibenzocyclooctadiene lactones 
exemplified by the ketone lactone steganone ( 1).2 Two total 
syntheses of 1 have been reported and another group has de- 
scribed synthetic efforts in this area.3 Our retro-synthetic 
analysis of 1 suggested that the dibenzocyclooctadiene skel- 
eton might be efficiently constructed by sequential substi- 
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tution of the p and a positions of an electron-deficient olefin 
using a conjugate addition alkylation sequence followed by 
nonphenolic oxidative coupling to yield a tetracyclic deben- 
zocyclooctadiene s t r ~ c t u r e . ~  Herein, we wish to describe a 
three-step construction of isostegane (2)l which demonstrates 
the validity of this strategy and which proceeds in 55% overall 
yield. 

Compound 2 was prepared in the following manner. The carbonyl 
anion equivalent 3 was generated from piperonal dithiomethyl acetal6 
(1 equiv, 1 M in THF, -78 "C) by treatment with n-butyllithium (1 
equiv). After stirring for 40 min at  -78"C, the butenolide 46 (1 equiv, 
1 M in THF) was slowly added over a period of 30 min. The resulting 
white suspension was stirred for 3 h a t  -78 "C whereupon the bromide 
57 (1 equiv, 1 M in THF) was rapidly added followed immediately by 
tetramethylethylenediamine (1 equiv).8 The temperature of the re- 
action mixture was then raised to -20 "C and stirring continued for 
10 to 12 h. Standard workup gave the adduct 6 as an amorphous yellow 
solid in 99% crude yield.$ Without purification, adduct 6 (2.5 g) was 
treated with a suspension of W-4 Raney Nickel (25 g) in acetone (100 
ml) at  reflux for 30 min. Vacuum filtration of the crude desulfurized 
product through silica gel gave compound 7 as a clear oil in 85% overall 
yield from 3. 

Cyclization of 7 into 2 was accomplished by slowly adding (10 min) 
compound 7 (1 equiv, 0.02 M in methylene chloride) to VOF3 (3 
equiv.) suspended in a 2:l mixture of methylene chloride and triflu- 
oroacetic acid (0.16 M) at  -45 "C.IO The reaction mixture was stirred 
at  -45 "C for 7 h and then worked up by addition of saturated sodium 
carbonate solution. The crude dark yellow product was purified by 
vacuum filtration through silica gel followed by crystallization from 
chloroform-methanol to give pure isostegane (mp 172-172.5 "C) as 
the sole reaction product in 65 to 70% yield.ll 

The spectral characteristics of compound 2 (uv, ir, NMR, and mass 
spectrum) clearly indicated it to be a tetracyclic dibenzocycloocta- 
diene lactone. However, the stereochemical configuration of 2 could 
not be assigned from these data. As a result, the bromide 8 was pre- 
pared12 and an x-ray structure determination undertaken. 

The crystals of compound 8 were monoclinic, space group P21/a, 
with a = 22.699 (9), b = 7.433 (6), c = 11.984 (5) A; p = 95.16 (2)" and 
dcalcd = 1.574 g cm-1 for 2 = 4. The intensity data were measured on 
a Hilger-Watts diffractometer (Ni filter Cu Ka radiation, 0-20 scans, 

Figure 1. 


